

Range Types

Jeff Davis
pgsql@j-davis.com

Why Range Types?

● Functionality
● Performance
● Ease-of-use

What is a Range Type?

● Represents a range of values, rather than
a single value.

● “1pm until 4pm” is a range
● “3.1 – 7.7” is a range
● “192.168.1.10 through .20” is a range

Functions/Operators

● Contains “@>”
● Overlaps “&&”
● Intersection “*”
● Union “+”
● Many more...

Example

CREATE TYPE numrange AS RANGE
(
 SUBTYPE = NUMERIC,
 SUBTYPE_CMP = numeric_cmp
);

Example

SELECT contains(
 range(1.7, 90.1),
 3.3 -- scalar
);
-- returns TRUE

SELECT overlaps(
 '[-2, -1]'::numrange,
 range(6.2) -- singleton range
);
-- returns FALSE

Alternative: Quantization

● Used to approximate range types
● Use “1:00” to mean “1:00 – 2:00”
● Unnecessarily dictates business rules

– Business rules should govern design, not
vice-versa!

● Inflexible and business-dependent
● Use Range Types, not quantization

Alternative: 2-columns

● Used to approximate range types
● Bloats queries, making even simple

queries complex and error-prone
● Bloats schema
● Can't efficiently use indexes
● Use Range Types, not the 2-column

approach

Alternative: 2-columns continued...

● Another major drawback – how do you
prevent overlapping ranges?

– Consider a time schedule

● With Range Types, you can take
advantage of Exclusion Constraints (new in
9.0) for a simple, robust solution.

● Without range types, it's a major challenge
just to prevent a schedule conflict!

– Do not underestimate this challenge

Back to Range Types: Infinity

● Can use “-INF” and “INF” for the lower and
upper bounds, respectively.

● Allow open-ended ranges

Empty Ranges

● Empty ranges are specified as:

'-'::numrange

● Every range contains the empty range
● Empty ranges are equal to other empty

ranges
● NOT like a NULL
● No range overlaps with the empty range

NULLs and Ranges

● Range boundaries cannot be NULL
● Would lead to confusion in cases like:

range(NULL, 10.1) –
range(NULL, 5.1)

● Use cases involving NULL would probably
better be solved using infinity.

Inclusive/Exclusive Bounds

● Does '[1.1, 2.2)' include the point 2.2?
● “[“ and “]” mean “inclusive”
● And “(“ and “)” mean “exclusive”
● Answer: No.
● Range(1.1, 2.2) constructor function uses

inclusive-exclusive form
– Other constructors exist

[) and (]

● Inclusive-exclusive and exclusive-inclusive
form

● Important because ranges can be adjacent
without having any overlapping points

– Consider a time schedule

● But singleton ranges must be []

Range Join

SELECT
 range_intersect(t1.r1, t2.r2)
 FROM t1, t2
 WHERE t1.r1 && t2.r2;

Temporal

● PERIOD is a range of TIMESTAMPs
● PERIODTZ is a range of TIMESTAMPTZs
● Use PERIOD to represent arbitrary time

ranges
● Prevent schedule conflicts with Exclusion

Constraints
● Improve performance with range indexing
● Simplify schema and queries

What about INTEGER?

● Is [1, 5] = [1, 6) ?
● Both represent the values 1 through 5
● Answer: yes.
● But how does the system know that

INTEGER is different from NUMERIC?

Continuous Ranges

● Until now, we've been using continuous
range semantics.

● Two ranges aren't equal unless boundaries
are equal and inclusivity/exclusivity of
boundaries are also equal.

● Example: NUMERIC

Discrete Ranges

● Represent a range of values with a definite
“step”

● Boundaries can be transformed from
inclusive to exclusive and vice-versa.

● [1,5] can become [1,6), (0, 5], or (0, 6)
● Example: INTEGER

Discrete Ranges continued...

● Specify a discrete range type by providing
a “canonical” function.

● Takes a range, changes it to a canonical
form, and returns the new range.

● Example: change any input range to '[)'
format.

● Allows generic range functions to work with
discrete ranges just like continuous ranges

Conclusion

● Don't constrain yourself to representing
individual points only

– Especially not when it comes to time!

● Simplify queries and schema
● Solve the “non-overlapping” problem

– Especially for scheduling!

● Use range indexing for performance

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

