
Queues in 
PostgreSQL

Thomas Munro 
PGCon 2016



About Me

• Joined EnterpriseDB’s database server team ~1 
year ago 

• Working on EDB Postgres Advanced Server and 
PostgreSQL 

• Minor contributor to PostgreSQL: SKIP LOCKED, 
cluster_name, remote_apply, various bug 
fixes (multixacts, SSI, portability, testing), review



What’s a Queue? 
Why Put One in an RDBMS? 

Example Use Cases 
Implementation 

Problems 
What Could We Do Better?



queue /kjuː/
noun 

1. Chiefly British A line 
or sequence of people 
or vehicles awaiting 
their turn to be attended 
to or to proceed.

Definition: Oxford Dictionary 
Image: paphotos.co.uk

http://paphotos.co.uk


queue /kjuː/
noun 

1. Chiefly British A line 
or sequence of people 
or vehicles awaiting 
their turn to be attended 
to or to proceed. 

[“Americans have 
started saying ‘Queue’.  
Blame Netflix” 
- New Republic] Definition: Oxford Dictionary 

Image: paphotos.co.uk

http://paphotos.co.uk


queue /kjuː/
noun 

2. Computing A list of 
data items, 
commands, etc., 
stored so as to be 
retrievable in a 
definite order, usually 
the order of insertion.

Definition: Oxford Dictionary

34

1

2

5



Informal Taxonomy
• Queues 

1. FIFO: First-in-first-out queues 

2. Priority queues 

• “Queues” 

3. Specialised queues (merging, reordering) 

4. Unordered/approximately ordered queues



1. FIFO Queues
• The order most people 

think of when they hear 
the word “queue” 

• Often used in low level 
code because the 
implementation is 
simple and fast: 
physical layout reflects 
logical ordering

3 2 1 tailhead



2. Priority Queues
• Sometimes a different 

explicit logical order is 
needed 

• Implementation 
techniques include sets 
of FIFO queues, trees 
and other data 
structures associated 
with sorting

Image:  Wikipedia



3. Specialised “Queues”
• Sometimes we use the word 

queue more loosely to 
describe something that gives 
up strict logical ordering to 
meet some other goal 

• Operating system IO 
schedulers and elevators/lifts 
allegedly improve global 
efficiency by merging and 
reordering queued requests

Image: epicioci pixabay.com

http://pixabay.com


4. Unordered & Approximately 
Ordered “Queues”

• Sometimes we don’t care about the order that 
items are retrieved in at all, we just want to 
process them as quickly as possible 

• … but usually we want at least approximate time 
ordering for fairness (no arbitrarily stuck 
messages), but don’t need strict global ordering 
for correctness 

• Transactional and concurrent systems blur the 
order of both insertion and retrieval



What’s a Queue? 
Why Put One in an RDBMS? 

Example Use Cases 
Implementation 

Problems 
What Could We Do Better?



Free clipart: pngimg.com

“Meh, why not use  
RabbitMQ/Redis/PGQ/

<thing>?”



You might consider using a 
plain old database if…

• … you want reliable persistent message processing that 
is atomic with respect to other database work (without the 
complications of distributed transactions) 

• … you don’t want the maintenance, backups, failover and 
risks of new moving parts (message broker daemons) 

• … your message rates and number of consumers are in 
the range that PostgreSQL and your hardware can handle 

• … you like PostgreSQL enough to attend a conference



What’s a Queue? 
Why Put One in an RDBMS? 

Example Use Cases 
Implementation 

Problems 
What Could We Do Better?



Mixing Transactions with 
External Effects

• We want to book a seat on a plane 

• We also want to send an SMS message with 
confirmation of the booking and seat number



Mixing Transactions with 
External Effects: Take 1

BEGIN;  
INSERT INTO booking …;

send_sms(…)

1

2



Mixing Transactions with 
External Effects: Take 1

Oops: we have sent an SMS but 
forgot the fact it represents due to 
an asteroid/bug/hardware failure 

before COMMIT



Mixing Transactions with 
External Effects: Take 2

BEGIN;  
INSERT INTO booking …; 

COMMIT; 

1



Mixing Transactions with 
External Effects: Take 2

Oops: we have committed the 
fact, but failed to send an SMS 
due to flood/transient network 
failure/SMS provider downtime



Mixing Transactions with 
External Effects: Take 3

BEGIN;  
INSERT INTO booking …; 

enqueue*;  
COMMIT;

send_sms(…)

1

2

BEGIN; 
dequeue*;

COMMIT; 



Mixing Transactions with 
External Effects

• We establish a new fact (the booking) and record our 
intention to notify the customer (the entry in the SMS 
queue) atomically 

• We remove the queued item after sending 
successfully (and probably have a retry system if the 
SMS service is temporarily failing) 

• The SMS sending operation should ideally be 
idempotent so that if we fail after sending but before 
committing the dequeue operation, sending the same 
message again won’t be problematic



Distributed Computing
• Job control for farming out 

expensive external computation to 
worker processes 

• Job control for database 
aggregation work moved out of 
interactive transactions



What’s a Queue? 
Why Put One in an RDBMS? 

Example Use Cases 
Implementation 

Problems 
What Could We Do Better?



Ingredients
• Messages: Rows in plain old tables 

• Priority ordering: ORDER BY 

• Signalling: NOTIFY & LISTEN 

• Concurrency: 

• None, course grained locking or SERIALIZABLE 

• … or explicit fine grained locking



No Physical FIFO
• The relational model (and therefore its 

approximate earthly embodiment SQL) doesn’t 
expose details of physical ordering or insertion 
order to the user 

• Ordering will therefore need to be a function of 
values in records supplied at INSERT time, and 
explicitly requested with ORDER BY when they 
are retrieved (it’s always a “priority queue”), or 
unordered



Enqueue Protocol

• BEGIN;  
— any other work  
INSERT INTO sms_queue (…)  
VALUES (…);  
NOTIFY sms_queue_broadcast;  
COMMIT; 

• Note: if inserting transactions overlap, then it is difficult to generate 
a key that increases monotonically with respect to commit/
transaction visibility order!



Dequeue Protocol: Take 1
• LISTEN sms_queue_broadcast; 

• BEGIN;  
SELECT message_uuid, destination, body  
  FROM sms_queue  
 ORDER BY insert_time  
 LIMIT 1;  
— if found, do something (internal or  
— external + idempotent) and then:  
DELETE FROM sms_queue  
 WHERE message_uuid = $1;  
COMMIT;  

• — repeat previous step until nothing found 

• — wait for notifications before repeating



Dequeue Protocol: Take 1

• At isolation levels below SERIALIZABLE, this 
protocol won’t work correctly if there are 
concurrent sessions dequeuing 

• At SERIALIZABLE level, at most one such 
overlapping session can succeed (worst case 
workload for SERIALIZABLE)



Dequeue Protocol: Take 1



Dequeue Protocol: Take 2
• LISTEN sms_queue_broadcast; 

• BEGIN;  
SELECT message_uuid, destination, body  
  FROM sms_queue  
   FOR UPDATE  
 ORDER BY insert_time  
 LIMIT 1;  
— if found, do something (internal or  
— external + idempotent) and then:  
DELETE FROM sms_queue  
 WHERE message_uuid = $1;  
COMMIT; 

• — repeat previous step until nothing found 

• — wait for notifications before repeating



Dequeue Protocol: Take 2



Dequeue Protocol: Take 2

Client

Client

Client

lock
wait
wait



Dequeue Protocol: Take 3
• LISTEN sms_queue_broadcast; 

• BEGIN;  
SELECT message_uuid, destination, body  
  FROM sms_queue  
   FOR UPDATE SKIP LOCKED  
 ORDER BY insert_time  
 LIMIT 1;  
— if found, do something (internal or  
— external + idempotent) and then:  
DELETE FROM sms_queue  
 WHERE message_uuid = $1;  
COMMIT; 

• — repeat previous step until nothing found 

• — wait for notifications before repeating

In PostgreSQL 9.4 and 
earlier which don’t have 

SKIP LOCKED, use 
pg_try_advisory_lock(x) 
in the WHERE clause, 
where x is somehow 

derived from the 
message ID



Dequeue Protocol: Take 3



Dequeue Protocol: Take 3

Client

Client

Client

lock

lock

lock



Dequeue Protocol: Take 3
• The ORDER BY clause is still controlling the time we start 

processing each item, but no longer controlling the order 
we commit 

• Dequeuing transactions that roll back cause further 
perturbation of the processing order 

• Looser ordering is good for concurrency while still 
approximately fair to all messages 

• Stricter ordering is needed for some replication-like 
workloads with a semantic dependency between 
messages



What’s a Queue? 
SQL 

Example Use Cases 
Implementation 

Problems 
What Could We Do Better?



Resilience
• The protocol discussed so far has messages which are locked, worked on and then 

deleted in the same transaction is simple, but doesn’t help us manage failures very 
conveniently 

• Some ideas for improvement, depending on requirements: 

• Handle failure of external systems by incrementing a retry counter on a message 
and giving up on messages after some maximum number of retries 

• Prevent such retries from happening too fast by setting a time column to a future 
time when incrementing message, which the dequeue operation should respect 

• Resilience against crashing or hanging workers is trickier because we can’t 
increment a retry count in an transaction that never commits; one approach is to 
have one transaction update a message state, and then do the real work in a 
separate transaction — this requires a protocol for cleaning up/stealing work 
items if they aren’t completed within a time frame



Some Other Considerations
• Watch out for ID space running out (32 bit integers) 

• If using a SEQUENCE to generate a strict order, be careful of cycling 
and be aware of behaviour when transactions overlap 

• Btrees not correlated with insert/delete order can develop a lot of bloat 
in high churn tables 

• Statistics for volatile tables might cause trouble (CF DB2 VOLATILE) 

• If there is no ordering requirement at all, in theory you might not even 
need an index on a queue table (you could use ctid to refer to arbitrarily 
selected locked rows) 

• Default vacuum settings may be insufficient, depending on your 
workload, leading to bloat and unstable performance



Vacuuming



What’s a Queue? 
SQL 

Example Use Cases 
Performance 

Problems 
What Could We Do Better?



Notifications

• It would be nice to have a new wait/notify feature 
that could handle ‘broadcast’ like NOTIFY, but 
also ‘notify one’: to avoid stampedes of 
otherwise idle workers when only one item has 
been enqueued 

• It might be better to do that with a blocking ‘wait’ 
function rather than the NOTIFY asynchronous 
message approach (?)



UNDO

• UNDO-log based MVCC should provide 
continuous recycling of space, avoiding bloat 
and giving smoother performance 

• … but no doubt bring new problems, and be 
extremely difficult to build



Serializable
• Queue-like workloads are the worst case for 

SERIALIZABLE 

• The executor could in theory consider returning 
tuples in a different order when there is a LIMIT, no 
[complete] ORDER BY, and another transaction 
has SIREAD locks on a tuple being returned 

• Perhaps this could reduce conflicts in such 
workloads, allowing higher throughput without 
giving up the benefits of SERIALIZABLE



<EOF>


