
Logical Replication –
Handling of Large Transactions

Hayato Kuroda kuroda.hayato@fujitsu.com
Hou Zhijie

© 2023 Fujitsu Limited1

⚫Hayato Kuroda
⚫Me.
⚫Living in Japan.
⚫Working at Fujitsu since 2018.

⚫Hou Zhijie
⚫Co-speaker.
⚫Could not be here…

Self Introduction

© 2023 Fujitsu Limited2

⚫ Logical decoding & logical replication.
⚫Decoding for large transactions in earlier versions.

⚫Prior to PG12.
⚫Improvements in PG13.
⚫Improvements in PG14.

⚫Parallel apply – Next enhancement in PG16.

Agenda

© 2023 Fujitsu Limited3

Logical decoding & replication
Workflow Changes

© 2023 Fujitsu Limited4

Logical decoding

© 2023 Fujitsu Limited

⚫ An infrastructure that transforms all persistent changes into another format.
⚫ The specifics of this format are determined by the output plugin.

⚫ The output can be interpreted without needing detailed knowledge of the
database's internal state.

⚫ Implemented based on the Write-Ahead Log (WAL).

⚫ Output plugin modules provide rich callback functions to allow user customization

based on their requirements.

5

Logical decoding | Workflow

© 2023 Fujitsu Limited

Consumer

Read the wal record

Decode the record

Store the decoding result
(change) into memory

Normal change

Allow to extract transaction
via SQL or replication

Final commit

⚫ The consumer process reads and decodes the
WAL records.

⚫ The decoded results are stored in memory on a per-

transaction basis (txn).

⚫ Stored data can be consumed either by calling

functions via SQL, or by using the streaming

replication protocol.

⚫ If the decoded results are consumed by the

streaming replication protocol, they are sent to

downstream and cleaned up when the transaction is

committed.

postgres=# INSERT INTO tbl VALUES (1);

INSERT 0 1

postgres=# SELECT * FROM pg_logical_slot_get_changes('test', NULL, NULL);

lsn | xid | data

-----------+-----+---

0/1558710 | 749 | BEGIN 749

0/1558710 | 749 | table public.tbl: INSERT: id[integer]:1

0/1558780 | 749 | COMMIT 749

(3 rows)

Example: consumed by the function

6

Logical replication

© 2023 Fujitsu Limited

⚫ A method of replicating data objects and their changes, based upon their replication
identity.

⚫ Uses a publish and subscribe model.
⚫ The upstream node is called publisher.

⚫ The downstream is subscriber.

⚫ Allows fine-grained control over both data replication and security.

⚫ Typical use-cases:
⚫ Sending incremental changes in a single database to subscribers as they occur.

⚫ Replicating between different major versions of PostgreSQL.

⚫ Replicating between PostgreSQL instances on different platforms.

⚫ …

7

⚫ The publication must be defined on an upstream node.

⚫ Then a down stream node subscribes the publication.

Logical replication | Usage

© 2023 Fujitsu Limited

postgres=# CREATE PUBLICATION pub FOR ALL TABLES;

CREATE PUBLICATION

postgres=# SELECT * FROM pg_publication;

oid | pubname | pubowner | puballtables | pubinsert | pubupdate | pubdelete | pubtruncate | pubviaroot

-------+---------+----------+--------------+-----------+-----------+-----------+-------------+------------

16396 | pub | 10 | t | t | t | t | t | f

(1 row)

postgres=# CREATE SUBSCRIPTION sub CONNECTION 'user=postgres dbname=postgres port=5431' PUBLICATION pub;

NOTICE: created replication slot "sub" on publisher

CREATE SUBSCRIPTION

postgres=# SELECT oid, subdbid, subname, subconninfo FROM pg_subscription;

oid | subdbid | subname | subconninfo

-------+---------+---------+---

16402 | 5 | sub | user=postgres dbname=postgres port=5431

(1 row)

8

Logical replication | Workflow

© 2023 Fujitsu Limited

Publisher node

Backend
BEGIN;

INSERT …;

COMMIT;

Walsender

Subscriber node

Apply worker

DB
Send replication messages of the transaction

BEGIN;
…
COMMIT;

Keep decoding WAL records

9

⚫ The progress of logical replication can be checked by reading the

pg_stat_replication (on publisher) and pg_stat_subscription (on subscriber) views.

Logical replication | Monitoring

© 2023 Fujitsu Limited

publisher=# SELECT pid, application_name, state, sent_lsn, replay_lsn, replay_lag

FROM pg_stat_replication;

pid | application_name | state | sent_lsn | replay_lsn | replay_lag

-------+------------------+-----------+-----------+------------+-----------------

26201 | sub | streaming | 0/37B2070 | 0/37B2070 | 00:00:00.017882

(1 row)

subscriber=# SELECT subid, subname, pid, received_lsn, last_msg_receipt_time

FROM pg_stat_subscription;

subid | subname | pid | received_lsn | last_msg_receipt_time

-------+---------+-------+--------------+-------------------------------

16388 | sub | 26198 | 0/9EFED40 | 2023-05-15 08:45:55.720919+00

(1 row)

10

Decoding for large transactions
… in earlier versions

© 2023 Fujitsu Limited11

Decoding for large transaction (in PG12)

© 2023 Fujitsu Limited

Walsender

Read the wal record

Decode the record

Store the decoding result
(change) into memory

If the number of changes

exceeds the limit, spill

decoded results to BufFile.

Normal change

Send the changes of related
xact to the subscriber node

Final commit

⚫ The decoded results are stored in

memory on a per-transaction basis (txn).

⚫ If the number of changes exceeds the

limit (Fixed amount: 4096), decoded

results are spilled to temporary file.

12

Replication for large transaction (in PG12)

© 2023 Fujitsu Limited

Publisher node

Backend
BEGIN;
INSERT …;

-- keep writing
……

COMMIT;

Walsender

Temp

If the number of changes exceeds the
limit, spill decoded results to file.

Subscriber node

Apply worker

DB
Send all the replication messages of the transaction

BEGIN;
…
COMMIT;

Keep decoding WAL records

13

Cons in PG12 and Improvements in PG13

⚫ PG12 cannot precisely control memory size used by walsender.
⚫Controlling memory usage is a challenge.
⚫ If the publisher node has enough memory, it seems to be inefficient.

⚫ In PG13, new GUC logical_decoding_work_mem has been introduced
⚫Specifies the maximum amount of memory to be used by logical decoding.

⚫Default is 64MB, and the minimum is 64KB.

© 2023 Fujitsu Limited

logical_decoding_work_mem = 128MB

14

Improvements in PG13

© 2023 Fujitsu Limited

Walsender

Read the wal record

Decode the record

Store the decoding result
(change) into memory

If the memory limit has
been exceeded, decoded
results are spilled changes

to BufFile.

Normal change

Send the changes of related
xact to the subscriber node

Final commit

⚫ The decoded results are stored in memory on a

per-transaction basis (txn).

⚫ If the number of changes exceeded the limit

(Fixed amount: 4096), decoded results are

spilled to disk.

⚫ When the memory limit (GUC

“logical_decoding_work_mem”) is exceeded,

decoded results are spilled to temporary file.

15

Cons in PG13 and Improvements in PG14

⚫ Transactions are only sent to the subscriber after they've been committed.
⚫Consequently, large transactions may trigger the network congestion,
⚫…leads apply lag.

⚫ In PG14, new subscription parameter streaming was introduced
⚫ Specifies whether in-progress transactions can be streamed for this subscription.
⚫Default value is false.

© 2023 Fujitsu Limited

postgres=# CREATE SUBSCRIPTION sub CONNECTION 'dbname=postgres’

PUBLICATION pub WITH (streaming = TRUE);

NOTICE: created replication slot "sub" on publisher

CREATE SUBSCRIPTION

postgres=# SELECT subname, substream FROM pg_subscription;

subname | substream

---------+-----------

sub | t

(1 row)
16

Improvements in PG14

© 2023 Fujitsu Limited

Walsender

Read the wal record

Decode the record

Store the decoding result
(change) into memory

If the memory limit has
been exceeded, spilled

changes to BufFile or send
to subsriber

Normal change

Send the changes of related
xact to the subscriber node

Final commit

⚫ The decoded results are stored in memory on a

per-transaction basis (txn).

⚫ If the number of changes exceeded the limit

(Fixed amount: 4096), decoded results are

spilled to disk.

⚫ When the memory limit (GUC

“logical_decoding_work_mem”) is exceeded,

decoded results are spilled to temporary file.

⚫ When the memory limit (GUC

“logical_decoding_work_mem”) is exceeded,

spilled changes to disk or send to subscriber.

17

Subscriber node

Improvements in PG14

© 2023 Fujitsu Limited

Publisher node

Backend
BEGIN;
INSERT …;

-- keep writing
……

COMMIT;

Walsender

Keep decoding WAL records

When the memory limit is exceeded,
decoded are sent to subscriber

Apply worker

DB

Send remained data of the transaction at once.

Temp

STREAM START ………. STREAM STOP
Data is spilled to
BufFile

COMMIT;

18

⚫ The system view pg_stat_replication_slots has been added.

Improvements in PG14 | Monitoring

© 2023 Fujitsu Limited

postgres=# SELECT slot_name, spill_txns, spill_count,

spill_bytes, total_txns, total_bytes

FROM pg_stat_replication_slots;

slot_name | spill_txns | spill_count | spill_bytes | total_txns | total_bytes

-----------+------------+-------------+-------------+------------+-------------

sub | 87 | 551 | 66398400 | 96 | 67046400

(1 row)

postgres=# SELECT slot_name, stream_txns, stream_count,

stream_bytes, total_txns, total_bytes

FROM pg_stat_replication_slots;

slot_name | stream_txns | stream_count | stream_bytes | total_txns | total_bytes

-----------+-------------+--------------+--------------+------------+-------------

sub | 96 | 275 | 116812800 | 132 | 126403200

(1 row)

19

Cons in PG14 & PG15

⚫ The performance of replicating large transaction still has room for improvement.

⚫Disk IO

⚫ Changes must be stored on the disk initially before they can be applied.

⚫Apply lag

⚫ Changes can only be applied at the end of the transaction, resulting in a possible slowdown of the
transaction.

© 2023 Fujitsu Limited20

Parallel Apply
Next enhancement developed in PG16

© 2023 Fujitsu Limited21

Overview and Advantage

⚫ An alternative approach for handling large transactions.

⚫ Could be available in the upcoming release

⚫ If the parallel mode is enabled, the subscriber applies streamed in-progress transactions

IMMEDIATELY.

⚫ The subscriber can handle in-progress transactions IN PARALLEL.

⚫ Parallel Apply enables faster and more efficient handling of large transactions.

⚫ Does not wait for COMMIT message from the publisher.

⚫ Does not serialize replication messages into files.

⚫ This can be widely used if users allow streaming of intermediate transactions.

⚫ Batch operation on logical replication system.

© 2023 Fujitsu Limited22

Usage

⚫ Users must set the subscription parameter streaming to parallel.

⚫ The parallelism can be tuned by parameter max_parallel_apply_workers_per_subscription.

© 2023 Fujitsu Limited

postgres=# CREATE SUBSCRIPTION sub CONNECTION 'dbname=postgres’

PUBLICATION pub WITH (streaming = parallel);

NOTICE: created replication slot "sub" on publisher

CREATE SUBSCRIPTION

postgres=# SELECT subname, substream FROM pg_subscription;

subname | substream

---------+-----------

sub | p

(1 row)

max_parallel_apply_workers_per_subscription = 5

23

Architecture

© 2023 Fujitsu Limited

Subscriber nodePublisher node

Backend
BEGIN;
INSERT …;

-- keep writing
……

COMMIT;

Walsender

Keep decoding WAL records
When the memory limit is exceeded,
decoded data is sent to subscriber

Apply worker

DB

Send all the decoded data of the transaction at once.

Apply worker sends
messages to
parallel apply worker

STREAM COMMIT;

Parallel Apply
worker

Apply worker starts
parallel apply worker

Data is applied
immediately

24

Parallel apply worker

⚫ The parallel apply worker is started when in-

progress transactions are streamed.

⚫ Multiple parallel apply workers can run per
subscription; the parallelism is based on
max_parallel_apply_workers_per_subscription.

⚫ Each parallel apply worker is assigned up to one

transaction, and the assignment will never be

changed during the apply handing.

⚫ The leader apply worker communicates with

parallel apply workers through dynamic shared

memory and shared message queues.

© 2023 Fujitsu Limited

Subscriber node

Parallel apply
worker

(Leader) Apply
worker

Dynamic
shared

memory

shm_mq

Parallel apply
worker

Parallel apply
worker

shm_mq

Dynamic
shared

memory

shm_mq

shm_mq

Dynamic
shared

memory

shm_mq

shm_mq

25

Basic workflow

© 2023 Fujitsu Limited

Leader apply worker Parallel apply worker

Launch a parallel apply
worker for the transaction

Pass replication messages
to parallel apply worker…

Check the relationship
between the transaction and

the parallel apply worker

Start new process
Setup replication origin

⚫ When the leader apply worker receives

the initial segment of an in-progress

transaction, it launches a new parallel

apply worker.

⚫ The parallel apply worker applies

received messages immediately.

⚫ If streaming stops, the assigned parallel

apply worker waits until it receives the

next set of replication messages.

⚫ When the leader apply worker receives

the next chunk, it resumes sending

replication messages to the same parallel

apply worker.

STREAM

START

STREAM

STOP

STREAM

START

Start a transaction

Apply replication messages

Pass replication message

Cache the assignment

Wait until it receives next
replication message

Pass replication messages
to same parallel apply

worker…
Apply replication messages

PARALLEL_TRANS_UNKNOWN

PARALLEL_TRANS_STARTED

Initial state

Txn is started

26

Commit protocol

© 2023 Fujitsu Limited27

Leader apply worker Parallel apply worker

Wait until the status
becomes FINISHED

Do actual COMMIT
PREPARED

⚫ When the leader apply worker receives
a PREPARE / COMMIT message, it
sends the message to the assigned
parallel apply worker and waits for it to
finish applying the transaction.

⚫ The parallel apply worker performs the
actual PREPARE / COMMIT action and
marks the transaction status as
FINISHED.

⚫ The leader apply worker removes the
relationship between the streamed
transaction and the parallel apply
worker.

⚫ The COMMIT PREPARED operation is
handled by the leader apply worker.

STREAM

PREPARE /

COMMIT

Do actual PREPARE / COMMIT

Release the assignment,
or stop parallel apply
worker if there are no

enough space in the pool

Wait until it receives next
replication message

PARALLEL_TRANS_STARTED Txn is started

Pass replication message

PARALLEL_TRANS_FINISHED Txn is finished

COMMIT

PREPARED

Wait until it is assigned to
another transaction,
or exit the process

27

Monitoring

⚫ The presence of parallel apply workers can be checked by reading the pg_stat_activity and

pg_stat_subscription views.

© 2023 Fujitsu Limited

postgres=# SELECT datname, pid, leader_pid, state, backend_xid, backend_type

FROM pg_stat_activity

WHERE backend_type LIKE 'logical replication parallel worker';

datname | pid | leader_pid | state | backend_xid | backend_type

----------+------+------------+-------+-------------+-------------------------------------

postgres | 2169 | 2165 | idle | | logical replication parallel worker

(1 row)

postgres=# SELECT subid, subname, pid, leader_pid, received_lsn FROM pg_stat_subscription;

subid | subname | pid | leader_pid | received_lsn

-------+---------+------+------------+--------------

16390 | sub | 2169 | 2165 |

16390 | sub | 2165 | | 0/1550108

(2 rows)

28

Failure Handling

⚫ The parallel apply worker exits if it meets an ERROR.

⚫ Before exiting, it puts the error message in the shared message queue and sends a
signal to the leader apply worker.

⚫ When the leader apply worker becomes aware of the issue, it pops the message, reports
it to the server log, and exits.

⚫ ... After this processes follow same procedure as the non-parallel case.

⚫ If users want to skip the transaction, they can check the LSN of the transaction from the
log and execute ALTER SUBSCRIPTION SKIP command.

© 2023 Fujitsu Limited29

Failure Handling

⚫ Sometimes the finish LSN of the remote transaction cannot be reported on the log.

⚫ The reason is that the streamed in-progress transaction initially lacks a final_lsn, which is
assigned at the end of the transaction.

⚫ In this situation, users must disable parallel mode temporarily and trigger the same
conflict again.

© 2023 Fujitsu Limited

[12999] ERROR: duplicate key value violates unique constraint "tbl_pkey"
[12999] DETAIL: Key (id)=(1) already exists.
[12999] CONTEXT: processing remote data for replication origin "pg_16390" during message type "INSERT" for
replication target relation "public.tbl" in transaction 732
[12974] ERROR: logical replication parallel apply worker exited due to error
[12974] CONTEXT: processing remote data for replication origin "pg_16390" during message type "INSERT" for
replication target relation "public.tbl" in transaction 732

logical replication parallel apply worker

postgres=# ALTER SUBSCRIPTION sub SET (streaming = on);

ALTER SUBSCRIPTION

postgres=# SELECT subname, substream FROM pg_subscription;

subname | substream

---------+-----------

sub | t

(1 row) 30

Challenges of Implementing Parallel Apply

⚫ Due to the concurrency, there were some additional risks of deadlocks.

⚫ The deadlock might happen if tables that were independent on the publisher side
become dependent on the subscriber side.

⚫ Three considerations were found during development, and they were already solved.
⚫ Consideration #1: Deadlock between the leader apply worker and the parallel apply worker.
⚫ Consideration #2: Deadlock between the leader apply worker and parallel apply workers.
⚫ Consideration #3: Deadlock when the shared message queue is full.

© 2023 Fujitsu Limited31

Subscriber node

Consideration #1: Deadlock between the leader apply worker
and the parallel apply worker

⚫ Assume that two transactions are executing concurrently on subscriber.

⚫ One transaction has been handling by PA, and another one is by LA.

⚫ LA is waiting for PA due to the primary key constraint of the subscribed table, while PA
is waiting for LA to send the next stream of changes or a transaction finish command
message.

⚫ The PostgreSQL lock manager cannot detect the deadlock because the processes do
not form a cycle in the wait-for-graph.

© 2023 Fujitsu Limited

Leader apply
worker (LA)

Parallel apply
worker (PA)

Id (PK) name Population

1 Tokyo 14,000,000

2 Kanagawa 9,000,000

3 Osaka 8,700,000

…

1

2

3

4

Acquire row lock

Wait until the row
lock is released

Apply worker cannot
receive COMMIT message

Parallel apply worker waits until
it receives COMMIT message

32

Consideration #1: Deadlock between the leader apply worker
and the parallel apply worker

⚫ A new session-level lock (stream lock) is introduced.

⚫ The Lock is acquired using the subscription ID and the related transaction ID.

⚫ The LA acquires the lock before sending STREAM STOP, and releases it after sending
STREAM START/ABORT/PREPARE/COMMIT.

⚫ The PA acquires the lock after processing STREAM STOP, and releases it immediately

⚫ The wait-for-graph becomes cyclic.

© 2023 Fujitsu Limited

Subscriber node

Leader apply
worker (LA)

Parallel apply
worker (PA)

Id (PK) name Population

1 Tokyo 14,000,000

2 Kanagawa 9,000,000

3 Osaka 8,700,000

…

1

3

Acquire row lock

Wait until the row
lock is released

Stream lock

2
Acquire applytransaction
lock

4

Wait until the applytransaction
lock is released

33

Performance improvements: Elapsed time

⚫ Performance testing is done with following steps:

1. Construct a synchronous logical replication system.

2. Insert tuples via “psql –c …” .

3. Measure the execution time of the command.

⚫ Both publisher and subscriber were located on the same server.

© 2023 Fujitsu Limited

shared_buffers = 100GB

Checkpoint_timeout = 30min

max_wal_size = 20GB

min_wal_size = 10GB

autovacuum = off

CREATE TABLE large_test (

id INTEGER PRIMARY KEY,

num1 BIGINT,

num2 DOUBLE PRESICION,

num3 DOUBLE PRESICION

);

¥timing

INSERT INTO large_test (id, num1, num2, num3)

SELECT i, round(random()*10), random(), random()*142

FROM generate_series(1, 5000000) s(i);

Executed SQL:

34

Result | # of tuples vs. time

© 2023 Fujitsu Limited35

Result | decoding buffer size vs. time

© 2023 Fujitsu Limited36

⚫ We aim to extend parallel apply to normal cases.

⚫ The basic idea is to launch parallel apply workers whenever the subscriber side
receives new transactions.

⚫ Some mechanism can be re-used.

⚫ Latency improvements may not be as significant as in the current case.

Future development

© 2023 Fujitsu Limited37

Summary

⚫ Logical replication is a powerful feature that continues to evolve.

⚫ One issue with logical replication has been handling large transactions.

⚫ Initially, the publisher node occupied considerable memory.

⚫ Since PostgreSQL 13, this has become controllable.

⚫ Since PostgreSQL 14, the publisher could stream in-progress transactions.

⚫ Since PostgreSQL 16, such transactions can be applied more quickly.

⚫ Our next goal is to extend parallel apply to normal cases.

⚫ If you have any questions and suggestions, please contact me:

⚫ kuroda.hayato@fujitsu.com

© 2023 Fujitsu Limited38

mailto:kuroda.hayato@fujitsu.com

© 2023 Fujitsu Limited

Thank you

Issue #2: Deadlock between the leader and parallel apply workers

⚫ Consider that the TX-1 and TX-2 are executed by two parallel apply workers (PA-1, PA-2)

⚫ PA-2 is waiting for PA-1 to complete its transaction while PA-1 is waiting for subsequent
input from LA.

⚫ Also, LA is waiting for PA-2 to complete its transaction in order to preserve the commit
order.

© 2023 Fujitsu Limited

Subscriber node

Parallel apply
worker-2

Parallel apply
worker-1

Id (PK) name Population

1 Tokyo 14,000,000

2 Kanagawa 9,000,000

3 Osaka 8,700,000

…

2

1

Wait until the row
lock is released

Acquire row lock

3

Worker-1 wait until it receives
subsequent messages

Wait until worker-2
completes the transaction

Leader apply
worker

40

Issue #2: Deadlock between the leader and parallel apply workers

⚫ To resolve this, another session-level lock (transaction lock) is introduced

⚫ The Lock is identified by the subid and the transaction id

⚫ The LA acquire the transaction lock at the end of transactions, and release immediately

⚫ PAs acquire the transaction lock before applying the first message of the transaction, and
release at the end of it

© 2023 Fujitsu Limited

Subscriber node

Leader apply
workerParallel apply

worker-2

Parallel apply
worker-1

Id (PK) name Population

1 Tokyo 14,000,000

2 Kanagawa 9,000,000

3 Osaka 8,700,000

…
Wait until the row
lock is released

Acquire row lock

Transaction

Stream

5

1

Worker-1 waits for stream lock

Leader waits for transaction
lock

2
3

4
6

41

Issue#3: Deadlock when the shared message queue is full

⚫ Consider that the TX-1 and TX-2 are executed by two parallel apply workers (PA-1, PA-2)

⚫ PA-2 is waiting for PA-1 to complete its transaction while PA-1 is waiting for subsequent
input from LA.

⚫ If the shared message queue between PA-2 and LA becomes full, LA waits until the
queue has enough space, but PA-2 cannot consume messages

© 2023 Fujitsu Limited

Subscriber node

Parallel apply
worker-2

Parallel apply
worker-1

Id (PK) name Population

1 Tokyo 14,000,000

2 Kanagawa 9,000,000

3 Osaka 8,700,000

…

2

1

Wait until the row
lock is released

Acquire row lock

3

Worker-1 wait until it receives
subsequent messages

Wait until shm_mq has
enough space

Leader apply
worker

42

Issue#3: Deadlock when the shared message queue is full

⚫ To resolve this, the wait for enqueuing has a timeout

⚫ If the timeout exceeds, the LA serialize all the pending messages to a file and start to
wait committing

⚫ When PA-2 detects the file, apply spooled changes

⚫ In this example, we can regard the case same as issues#2

© 2023 Fujitsu Limited

Subscriber node

Parallel apply
worker-2

Parallel apply
worker-1

Id (PK) name Population

1 Tokyo 14,000,000

2 Kanagawa 9,000,000

3 Osaka 8,700,000

…

2

1

Wait until the row
lock is released

Acquire row lock Worker-1 wait until it receives
subsequent messages

Leader apply
workerTemporary

file

Write messages into file

43

