Your remote PostgreSQL DBA Team
data egret

My "default" postgresql.conf file, Step
by Step
llya Kosmodemiansky

ik@dataegret.com

mailto:ik@dataegret.com

Before we start...

o 269 settings in version 10

e 365 setting in version 14

o Settings in postgresql.conf are to be changed manually

e postgresql.auto.conf can be updated by ALTER SYSTEM

e pg_settings combines everything together

pg settings

postgres=# \X

Expanded display is on.

postgres=# select * from pg_settings where name ~ 'checkpoint_timeout';

—[RECORD 1 J---#-m-mmm oo oo oo oo -

name checkpoint_timeout

setting 3600

unit S

category Write-Ahead Log / Checkpoints

short_desc
extra_desc

Sets the maximum time between automatic WAL checkpoints.

|
|
|
|
I
|
context | sighup
vartype | integer
source | configuration file
min_val | 36
max_val | 86400
enumvals |
boot_val | 300
reset_val | 3600
sourcefile | /etc/postgresqgl/10/main/postgresql.conf
sourceline | 208
pending_restart | f

g settings category

postgres=# select distinct(category) from pg_settings ;
category

Write-Ahead Log / Settings

Client Connection Defaults / Locale and Formatting

Version and Platform Compatibility / Other Platforms and Clients

Replication

Query Tuning / Genetic Query Optimizer

Write-Ahead Log / Archiving

Resource Usage / Memory

Statistics / Monitoring

Reporting and Logging / Where to Log

Resource Usage / Kernel Resources

Preset Options

Error Handling

Replication / Sending Servers

Reporting and Logging / What to Log

Lock Management

Connections and Authentication / Security and Authentication

Process Title

Resource Usage / Disk

Replication / Standby Servers

Autovacuum

Write-Ahead Log / Checkpoints

Client Connection Defaults / Shared Library Preloading

Connections and Authentication / Connection Settings

Query Tuning / Planner Method Configuration

Replication / Master Server

Statistics / Query and Index Statistics Collector

Developer Options

Resource Usage / Background Writer

Resource Usage / Asynchronous Behavior

Query Tuning / Other Planner Options

File Locations

Client Connection Defaults / Statement Behavior

Reporting and Logging / When to Log

Resource Usage / Cost-Based Vacuum Delay

Query Tuning / Planner Cost Constants

Client Connection Defaults / Other Defaults

Version and Platform Compatibility / Previous PostgreSQL Versions

(37 rows)

pg settings context

postgres=# select distinct(context) from pg_settings ;
context

postmaster
superuser-backend
user

internal

backend

sighup

superuser

(7 rows)

postgresgl.conf - main config file

e We usually advise not to change the order of the settings when you
edit them manually

e postgresql.conf supports includes
e Always check pg_settings if you doubt...
e And off we go

listen addresses
e We usually use [l or [EZEIER]. One can use if Postgres

works together with pgbouncer.
o |f Postgres listens on external IP address, this IP address must be
protected by a firewall.

e There are arguments that using UNIX-socket could bring more
performance, but generally using TCP is more convenient because

of keepalives.

https://www.cybertec-postgresql.com/en/postgresql-performance-advise-unix-sockets-vs-localhost/

max _connections

e Client connection cause Postgres to spawn a "heavy" Unix-Process

e Thats why things like [EFEEdhEESL =L would never work
e A much better idea: or and really small

pool sizes in pgbouncer or another connection pooler

superuser_reserved_connections

e When all of are utilized, DBA needs to connect to
a database server in order to troubleshoot such situation

e Should be at least 5, better 10

Don't forget

Postgres already have some processes:

/usr/lib/postgresql/14/bin/postgres -D /var/lib/postgresql/14/main -c config_file=/etc/postgresql/14/main/postgresql.conf
postgres: 14/main: checkpointer

postgres: 14/main: background writer

postgres: 14/main: walwriter

postgres: 14/main: autovacuum launcher

postgres: 14/main: stats collector

postgres: 14/main: logical replication launcher

Keepalives

o Ll /CEEEAERETRERERE |f network is unstable, 5 seconds can
really help

L tcp_keepalives_interval = 1

N tcp_keepalives_count = 5

e Even if you have a very good network quality between your app
and database, it could became suddenly unstable

shared buffers

e Rule of Thumb: 25% of RAM

e But to use 16/32/64Gb of efficiently, fast discs are
required

e |f the database is definitely smaller than RAM, 75% of RAM for

e = thnielas can also work

huge_pages

e Rule of thumb: when there are at least 8-16Gb [t iian
using of Huge Pages is recommended

o [IGEELES = eh! (and not)

e Huge Pages should be first enabled in kernel

W vm.nr_overcommit_hugepages [EIslsM vin.nr_hugepages

temp_file_limit

e Temporary file limit in Kb per session

e good starting point is number of sessions * temp_file_limit < 10%
of your disks

e butitis very individual for particular server and application

work mem

e RAM per process, Postgres workers use this RAM for sorting, hash
joins etc.

e 128Mb is a good starting point
e To high setting could cause OOM

e Could be individually configured for each session

maintenance work mem

e Same as but for superuser connections
o 256-512Mb, if there is enough RAM

e Could be quite helpful for [ezi= 5=\ el0]\[6]0]21:{= A7
. s a part of [PTTTSYRPPSRPSTUEI. can be

smaller

Write Ahead Log
. unless zou use logical replication

o [lal=le olentnpan et oIt alGTe] kY, if it IS by given recovery target
acceptable, could gain performance improvement

(I max_wal_size = 32GB

Ll checkpoint_completion_target

bgwriter

e Background Writer helps Checkpointer to send unused dirty pages
to disk

e Regret to say, it is not the best part of PostgreSQL codebase
o All settings to maximum:
M bgwriter_delay = 10ms

M bgwriter_lru_maxpages = 1000

M bgwriter_lru_multiplier = 10.0

o It might help if your disks are not the best

Must have optimizer settings

or less

M ecffective_cache_size = 2 * shared_buffers

Ml default_statistics_target = 100

Autovacuum

e Thereis no practical use case, where autovacuum should be
disabled

e Deserves a separate talk (or maybe a separate tutorial)

e We try to provide some good starting points

Autovacuum

e Autovacuum checks tables one by another, to figure out if they
need to be vacuumed

o It starts vacuuming if either ERRLA TS0 el g=r 0 onlsl or
IRl (o L =T et eak i itoraer sl achieved (whatever comes first)

(M autovacuum_vacuum_threshold = 50 BS10Rg YV 1g=Raale s Hiil=le

M autovacuum_vacuum_scale factor = 0.05ERY X AN YER1g=Rlelsllil=ls

Autovacuum

o |f thereis alot of write acivity in your database

. default might be not enough
+ Consider but beware of 10

Autovacuum
. # 9.6 and older - default is

most likely enough, older versions often require up to 1B

Ll autovacuum_freeze_table_age = 156000000

(Ml idle_in_transaction_session_timeout

Autovacuum also collects statistics

Ml autovacuum_analyze_threshold = 50

Ml autovacuum_analyze_scale_factor = 0.05

Autovacuum

M autovacuum_naptime

Ll autovacuum_vacuum_cost_delay = 5ms

Those settings were designed to reduced impact of vacuuming on the
system, but that doesn't work, so minimize them.

Don't forget manual vacuum

e There are cases when you need it

e When an autovacuum parameter is not set, Postgres falls back to
vacuum setting

vacuum_cost_delay = 0 # 0-100 milliseconds
vacuum_cost_page_hit = 0 # 0-10000 credits

vacuum_cost_page_miss = 1 # 0-10000 credits

vacuum_cost_page_dirty = 10 # 0-10000 credits

vacuum_cost_limit = 100 # 1-16000 credits

log_directory = "/var/log/postgresql”

log_filename = "postgresql-%Y-%m-%d.log"

log_rotation_age = 1d

log_rotation_size = @

log_min_error_statement = error

log_min_duration_statement = 1000 # -1 disabled, 6 -all, in ms

log_checkpoints = on
log_line_prefix = "%m %p %u@%d from %h [vxid:%v txid:%x] [%i] "

log_lock_waits = on
log_statement = "none”
log_replication_commands = on
log_temp_files = ©
log_timezone = "Europe/Berlin”

Logging

track_activities on

track_counts = on

track_io_timing =

track_functions =
track_activity_query_size = 8192
log_autovacuum_min_duration = 1000

pg stat_statements

shared_preload_libraries = 'pg_stat_statements’

Do not forget to create extension in postgres database:

psql -d postgres -c "create extension pg_stat_statements”

pg_stat_statements.max = 10000
pg_stat_statements.track = top
pg_stat_statements.track_utility = false

pg_stat_statements.save = false

Replication

(I max_wal_senders =

Ll hot_standby = on

max_standby_streaming_delay = 120s # max delay before canceling
L queries

hot_standby_feedback = on

ol FRROR: canceling statement due to conflict with recovery
o you need it only if you have intensive OLTP on primary

o do not switch it on until your replica caught it up!

Questions?

ik@dataegret.com

mailto:ik@dataegret.com

